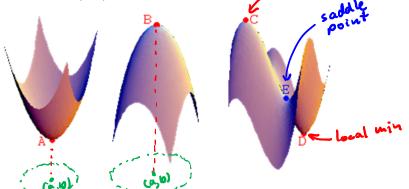
Sec 14.7: Maximum and Minimum Values

DEF. Let z = f(x, y) be defined on a region planar \mathcal{R} . Suppose $(a, b) \in \mathcal{R}$. Then: 1. f(a, b) is a local minimum value of f if $f(x, y) \ge f(a, b)$ for all points (x, y) in an open disk centered at (a, b).

2. f(a,b) is a local maximum value of f if $f(x,y) \leq f(a,b)$ for all points (x,y) in an open disk centered at (a,b).



Theorem. If $z = f(\dot{x}, \dot{y})$ has a local max(or local min) at the point (a, b), and both partial derivatives at the point (a, b) exist, then

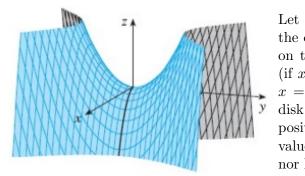
$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0.$

Critical Point. Is an interior point (a, b) in the domain of the function where either

$$\begin{cases} f_x(a,b) = 0\\ f_y(a,b) = 0 \end{cases}$$

or where one or both $f_x(a, b)$ and $f_y(a, b)$ do not exist.

Saddle Point



$$\chi = \chi^2 - x^2$$
 We converge to the form $f_x = 2x$ and $f_y = 2y$,
the only critical point is $(0,0)$. Notice that for points
on the x-axis we have $y = 0$, so $f(x,y) = -x^2 < 0$
(if $x \neq 0$). However, for points on the y-axis we have
 $x = 0$, so $f(x,y) = y^2 > 0$ (if $y \neq 0$). Thus every

2x=0 =0

disk with center (0,0) contains points where f takes positive values as well as points where f takes negative values. Therefore, f(0,0) = 0 cannot be a local max nor local min. This motivates the following definition.

A function f(x, y) has a **saddle point** at a critical point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) where f(x, y) > f(a, b) and domain points (x, y) where f(x, y) < f(a, b).

In this case, the graph of z = f(x, y), nearby the saddle point looks like a Pringle's potato chip.

Ex1. Find all critical points of $P(x, y) = x^3 - 12xy + 8y^3$.

Ex1. Find all critical points of
$$P(x, y) = x^3 - 12xy + 8y^3$$
.

$$P_x = 3x^2 - (2y); P_y = -12x - 24y^2$$

$$set \begin{cases} 3x^{4} - 12y = 0 \\ -12x - 24y^{2} = 0 \end{cases} \Rightarrow \begin{cases} x^{4} - 4y = 0 \dots (1) \\ -x + 2y^{2} = 0 \dots (2) \end{cases}$$
From (2): $x = 2y^2 \dots (xt)$
Replace (4t) in (1): $(2y^2) - 4y = 0$
 $4y^4 - 4y = 0 \Rightarrow 4y(y^3 - 4y) = 0$
 $\Rightarrow y = 0, y = 1$
i) when $y = 0, x = 2(e^{y^2} - 4y)$
so the conitical points are (0,0) and (2, 0).

 2^{nd} Derivative Test. Suppose f(x, y) and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Let D be the quantity defined by $\mathbf{2}$

$$D := f_{xx}(a,b) \cdot f_{yy}(a,b) - \left[f_{xy}(a,b)\right]^2$$

Then, we have the following.

- 1) If D > 0 and $f_{xx}(a, b) > 0$, f has a local min. at (a, b). Concave up 2) If D > 0 and $f_{xx}(a, b) < 0$, f has a local max. at (a, b). (or cave down
- 3) If D < 0, f has a saddle point at (a, b).
- 4) If D = 0, no conclusion can be drawn.

Ex2. Find and classify the critical point(s) of the function $P(x, y) = x^3 - 12xy + 8y^3$. From Ex 1: the critical points are co, of and c2, 1).

$$\frac{\operatorname{tools:}}{\left|P_{XX} = 6x\right|; P_{YY} = 48y ; P_{XY} = -12 = P_{YX}}$$

$$\frac{\left[\frac{C \cdot P \cdot (0, 0)}{P = P_{X0}(0, 0)}\right]}{P = P_{X0}(0, 0) \cdot P_{YY}(0, 0) - \left[P_{XY}(0, 0)\right]^{2} = (0)(0) - \left[-12\right]^{2} < \emptyset$$
since 0.00, there is a saddle point at (0, 0) by the second Denivolve Test
$$\frac{C \cdot P \cdot (2, 1)}{O = P_{XX}(2, 1) - P_{YY}(2, 1) - \left[P_{XY}(2, 1)\right]^{2} = (12)(48) - (-12)^{2} \qquad \text{Since D>B, we check}$$

$$= 12(48 - 12) > \emptyset$$
By the second Denivolve Test there is a local min.
at (2, 1).

Exercises.

(1) Find and classify all critical points of the function $g(x, y) = x^2y + 4xy + 4y^2$. (2) Find all critical points of $Q(x, y) = (x^2 + y^2) \exp(y^2 - x^2)$.

Sec 14.7 <u>Absolute</u> Maxima and Minima on closed, bounded regions.

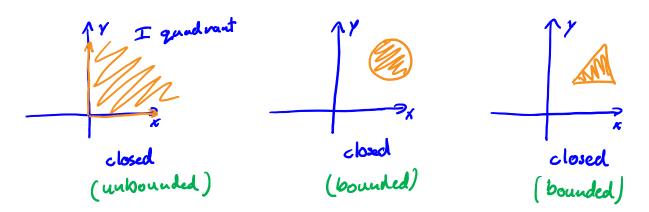
Absolute Maximum and Minimum Values:

Let (a, b) be a point in the domain D of a function f of two variables. Then f(a, b) is the

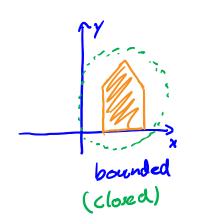
- absolute maximum value of f on D if $f(a,b) \ge f(x,y)$ for all (x,y) in D.
- absolute minimum value of f on D if $f(a,b) \leq f(x,y)$ for all (x,y) in D.

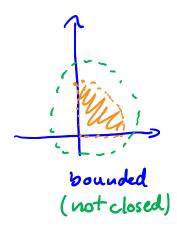
Closed and Bounded Regions:

• A closed region in \mathbb{R}^2 is a set that contains all its boundary points.

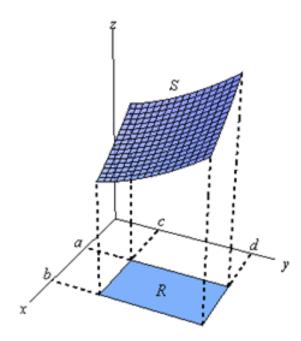


• A bounded region in \mathbb{R}^2 is a set that is contained within some disk.





Thm: Extreme Value Theorem Let z = f(x, y) be a continuous function over the region \mathcal{R} in \mathbb{R}^2 . If \mathcal{R} is closed and bounded, then f attains an absolute maximum and an absolute minimum over the region \mathcal{R} .



Algorithm: To find the absolute maximum and minimum values of a continuous function on a closed, bounded region \mathcal{R} , do the following steps:

- Step 1 : List the interior critical points and evaluate f at these points.
- Step 2 : List the boundary points where f may have local maxima and minima and evaluate f at these points.
- Step 3 : The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Ex3. Find the absolute maximum and the absolute minimum values of the function

$$f(x,y) = 2 + 2x + 4y - x^2 - y^2$$

on the closed triangular region \mathcal{R} with vertices (0,0), (0,9) and (9,0).

$$f : continuous en R, and R is closed and bounded.$$
By the Extreme Value thun, f attains en ABSOLATE
$$f_{x} = 2 - 2x \Rightarrow \int 2^{-2x=0} \Rightarrow x=1$$
Fix only avided pot is (2,1)
$$f_{y} = 4 - 2y$$

$$f_{x} = 2 - 2x \Rightarrow \int 2^{-2x=0} \Rightarrow x=1$$
Fix only avided pot is (2,1)
$$f_{y} = 4 - 2y$$

$$f_{x} = 4$$

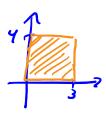
Exercise.

L C

Pound

Find the absolute maximum value and absolute minimum value of f(x, y) = xy - x - 2y on the region $D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 3, |y - 2| \le 2\}.$

-2 & Y-2 & 2 0 <u>4</u> Y <u>4</u> Y

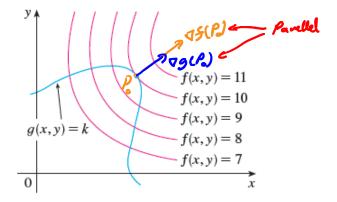


Sec 14.8: Lagrange Multipliers

Suppose f(x, y) and g(x, y) are differentiable functions. Let C be the level curve defined by the equation g(x, y) = k. If $P_0 = (a, b)$ is a point on the curve C for which $f(P_0)$ is the absolute maximum (or minimum) of f(x, y) along the curve C, then $\nabla f(P_0)$ and $\nabla g(P_0)$ must be parallel; that is

$$\nabla f(P_0) = \lambda \nabla g(P_0)$$

for some real number λ .



Method of Lagrange Multipliers (2 variables) [This method assumes that the extreme values exist and $\nabla g \neq \mathbf{0}$ on the curve g(x, y) = k]. To find the maximum and minimum values of f(x, y) subject to the constraint g(x, y) = k we do the following:

(a) Find all values of x, y and λ such that

$$\left\{ \begin{array}{ll} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = k \end{array} \right.$$

(b) Evaluate f at all points (x, y) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Ex1. What are the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$?

•	nar/min	Contract 1
max/min f	(x,y)= x ² + 2y ²	
subject to xt	+y ² =1	
9	τ. (X, γ)	
we will use L	agnange Multipliens:	
(∇fu,y) = 2 5	79(x,y) (Z2x,4y)=	2 < 2x, 4y > (mun equations
q(x,y) = l	x ² + x ² - 1	
		2 < 2x, 4y > "main equations" (*)
then (2x=22	r (x(1-2)=0 (i)	
24y = 22y	$\Rightarrow \begin{cases} \gamma(2-\lambda)=0 (ii) \\ \gamma(2-\lambda)=0 (ii) \end{cases}$	
(X ² ty ² =1	$x = \begin{cases} x(\iota-\lambda) = 0 & (i) \\ y(2-\lambda) = 0 & (ii) \\ x^{2} + y^{2} = 1 & (iii) \end{cases}$	
From (1) [X20]		
Case I : x = 0	$\gamma(2^{-\lambda}) = 0$	
$\frac{case T}{x^{2} + y^{2}} = 1 (iii)$		
From (iii): $0^2 + y^2 = 1 \Rightarrow y = 1 0^m y^{m-1}$		
Ceu	ichter: (0,1), (0,-1)	
Case II: 2=1	(iii)	
	y(2-2)=0 (ii) x ² +y ² =1 (iii)	
1	$x^{2}+y^{2}=1$ (<i>u</i>)	
Tu (ii): y(2-	1)=0 -0 y=0	
then	n (ill): X2 +02=1 = ×	=1, X = -1
	lates: (1,0), (-1,0)	
Canidates	1 100 4414	1 5 2
(a,b) frayb) = a	the ABS, MAX. U	uluc is 2, o, 1) and (0,-1).
	the ABS, MIN, unly	
(0,1) 2 (0,-1) 2	it occurs at l	
$(1, \alpha)$ 1		
(-1,0) 1	Extra Abter	an
- I	Vf(0,1)// Vg(0,1)?	g (a) -1) = 1.

Ex2. Use Lagrange multipliers to find the maximum and minimum values of the function

$$f(x,y) = x^2 + x + 2y^2$$

over the planar region $x^2 + y^2 \leq 1$. Let $g(x,y) = x^2 + y^2$ •) when $x^{2} + y^{2} < l$: $f_{x^{0}} = 2x + l$ (set critical pt is $(-Y_{2}, 0)$ $f_{y} = 4y$ => $\int_{2x + 1.70}^{3x + 1.70} - 9x = \frac{7}{2}$ (It satisfies $(-Y_{2})^{2} + 0^{2} < l$) ·) when x2 + y2 < ·) when K2+Y2=1 (when using lagninge multipliers) $\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = l \end{cases} \qquad \Rightarrow \begin{cases} \langle s_{k}, s_{y} \rangle \\ \langle 2x+l, 4y \rangle = \lambda \langle 2x, 4y \rangle \\ \chi^{k_{y}} y^{k_{z}} l \end{cases} \qquad (1)$ From (ii) y=0 on Z=2 $\frac{cose I}{x^{2}+y^{2}} \begin{cases} 2x+1=2xx \ (i) \\ x^{2}+y^{2}=1 \ (iii) \end{cases}$ using (iii): x2+02=1 => x=1, x=-1 canidates: (1,0), (-1,0) $\frac{\text{cose} \mathbb{I}}{x^{2} + y^{2}} = 1 \quad (iii)$ using(i): 2x+1=2(2)x => 1=2x => x=1/2 $In(iii): (\frac{1}{2})^{2} + \gamma^{2} = 1 \Rightarrow \gamma^{2} = \frac{3}{4} \Rightarrow \gamma = \frac{1}{2}, \gamma = -\frac{1}{2}.$ Canidates fra, b) = e3 + e + 262 Canddates: (1 = 3), (-1, -53) (a, 6) 6/ the ABS, MAX, velore is 9/4/ the ABS, MOV. value is -1/4 (1.0)

Method of Lagrange Multipliers (3 variables). To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k:

(a) Find all values of x, y, z, and λ such that

$$\left\{ \begin{array}{ll} \nabla f(x,y,z) = \lambda \nabla g(x,y,z) \\ g(x,y,z) = k \end{array} \right.$$

(b) Evaluate f at all points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Ex3. Find the point(s) on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to the point (3, 1, -1).

$$\begin{cases} \text{ winize } dotauce = \sqrt{(k+s)^{k} + (y-1)^{2} + (X+1)^{k}} \\ \text{ subject } the x^{2} + y^{2} + x^{2} = 4. \end{cases}$$

$$(3, 1, -1)$$

$$\text{then we verifie}$$

$$\text{winimize } dotauce^{2} = frog y(z) = (X+3)^{2} + (y-1)^{2} + (X+1)^{3}$$

$$\text{subject } he y^{2} + y^{2} + z^{2} = 4$$

$$\text{ve fault use lagrange's Method}$$

$$\begin{cases} \nabla f(ty, x) = \pi \nabla g(ty, y, x) \\ g(ty, x) \end{cases} \implies \begin{cases} \langle 2(x-3), 2(y-1), 2(z+0) = \pi (2x, ey, ez) \\ y^{2} + y^{2} + x^{2} = 4 \end{cases}$$

$$\text{then } \begin{cases} 2(x-3) = 2\pi \\ x^{2} + y^{2} + x^{2} = 4 \end{cases}$$

$$\begin{cases} \chi(t-3) = 2\pi \\ \chi(t+1) = 2\pi$$

Exercise. A rectangular box without a lid is to be made from 12 m^2 of cardboard. Find the maximum volume of such a box.

Lagrange Multipliers with two constraints

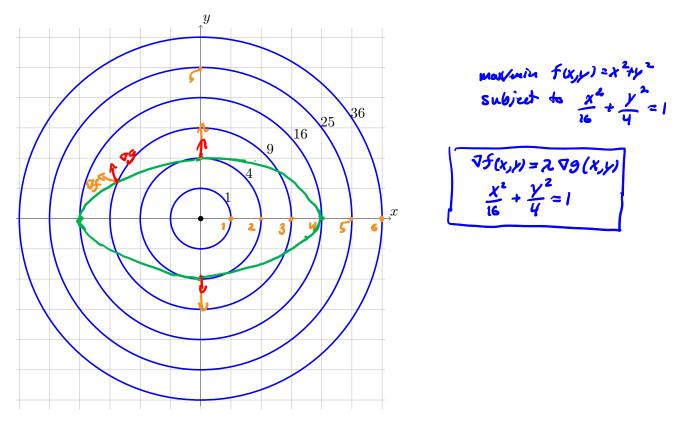
Suppose now that we want to find the maximum and minimum values of f(x, y, z) subject to the constraints g(x, y, z) = k and h(x, y, z) = c. In this case we need to find all values of x, y, z, λ and μ such that

Ex4. The plane x + y + 2z = 12 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Use Lagrange multipliers with two constraints to find the points on the ellipse that are nearest to and farthest from the origin.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mu uego i w i ze \ / un w i w i ze \ d ti h u u e \ell = 5 ug \mu \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / un w i w i ze \ d ti h u u e \ell = 5 ug \mu \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / un w i w i ze \ d ti h u e \ell \leq 5 ug \mu \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / un k u w i w i ze \ d ti h u e \ell \leq 5 ug \mu \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / u e \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / u e \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / u e \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / u e \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / u e \chi | = \chi^2 e \mu^2 + \chi \end{array} \\ \begin{array}{c} y uego i w i ze \ / u e \chi | = \chi^2 e \mu^2 + \chi \end{matrix} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ y uego i \chi | = \chi^2 e \mu^2 + \chi \end{matrix} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2 + \chi \\ \end{array} \\ \begin{array}{c} y uego i \chi | = \chi^2 e \mu^2$$

Exercise. Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x - y + z = 1 and the cylinder $x^2 + y^2 = 1$.

Ex5. Sketch the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$ on the figure below. **Note:** circles represent some level curves of the function $f(x, y) = x^2 + y^2$.



We want to identify the absolute maximum value and the absolute minimum value of the function $f(x, y) = x^2 + y^2$ subject to the contraint $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

Use the picture to complete the following:

• The candidates (a, b) for the location of absolute extrema using the method of Lagrange Multipliers are:

(4,0), (-4,0), (0,2), (0,-2)

- The absolute maximun value is: <u></u>
- The absolute minimun value is: 4